3.190 \(\int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=95 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {2 \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}-\frac {2 \tan (c+d x)}{a d \sqrt {a \sec (c+d x)+a}} \]

[Out]

2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-2*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)+2/3*tan(
d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3887, 302, 203} \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {2 \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}-\frac {2 \tan (c+d x)}{a d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^4/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - (2*Tan[c + d*x])/(a*d*Sqrt[a + a*Sec
[c + d*x]]) + (2*Tan[c + d*x]^3)/(3*d*(a + a*Sec[c + d*x])^(3/2))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rubi steps

\begin {align*} \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(2 a) \operatorname {Subst}\left (\int \frac {x^4}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {(2 a) \operatorname {Subst}\left (\int \left (-\frac {1}{a^2}+\frac {x^2}{a}+\frac {1}{a^2 \left (1+a x^2\right )}\right ) \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {2 \tan (c+d x)}{a d \sqrt {a+a \sec (c+d x)}}+\frac {2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {2 \tan (c+d x)}{a d \sqrt {a+a \sec (c+d x)}}+\frac {2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.83, size = 162, normalized size = 1.71 \[ \frac {64 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \cot ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^5(c+d x) \left (\frac {1}{\sec (c+d x)+1}\right )^{7/2} \left ((\sin (c+d x)-2 \sin (2 (c+d x))) \sqrt {\frac {1}{\cos (c+d x)+1}} \sqrt {\cos (c+d x)}+3 \cos ^2(c+d x) \sin ^{-1}\left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{\cos (c+d x)+1}}}\right )\right )}{3 d \left (\cot ^2\left (\frac {1}{2} (c+d x)\right )-1\right )^2 (a (\sec (c+d x)+1))^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[c + d*x]^4/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(64*Cos[(c + d*x)/2]^6*Cot[(c + d*x)/2]^4*Sec[c + d*x]^5*((1 + Sec[c + d*x])^(-1))^(7/2)*(3*ArcSin[Tan[(c + d*
x)/2]/Sqrt[(1 + Cos[c + d*x])^(-1)]]*Cos[c + d*x]^2 + Sqrt[Cos[c + d*x]]*Sqrt[(1 + Cos[c + d*x])^(-1)]*(Sin[c
+ d*x] - 2*Sin[2*(c + d*x)])))/(3*d*(-1 + Cot[(c + d*x)/2]^2)^2*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 295, normalized size = 3.11 \[ \left [-\frac {3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (4 \, \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (4 \, \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )\right )}}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/3*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*(4*cos(d*x + c) - 1)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c)), -2/3*(3*(co
s(d*x + c)^2 + cos(d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(
d*x + c))) + sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(4*cos(d*x + c) - 1)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2
+ a^2*d*cos(d*x + c))]

________________________________________________________________________________________

giac [B]  time = 7.99, size = 258, normalized size = 2.72 \[ \frac {3 \, \sqrt {-a} {\left (\frac {\log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {\log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )} + \frac {2 \, {\left (\frac {5 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {3 \, \sqrt {2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/3*(3*sqrt(-a)*(log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2
) + 3)))/(a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x
+ 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/(a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))) + 2*(5*sqrt(2)*tan(1/2*d*x + 1
/2*c)^2/sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - 3*sqrt(2)/sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)/((a*
tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/d

________________________________________________________________________________________

maple [A]  time = 1.23, size = 142, normalized size = 1.49 \[ -\frac {\left (3 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )-8 \left (\cos ^{2}\left (d x +c \right )\right )+10 \cos \left (d x +c \right )-2\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{3 d \sin \left (d x +c \right ) \cos \left (d x +c \right ) a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/3/d*(3*cos(d*x+c)*sin(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))-8*cos(d*x+c)^2+10*cos(d*x+c)-2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(
1/2)/sin(d*x+c)/cos(d*x+c)/a^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^4}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**4/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**4/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________